Forecasting with Sufficient Dimension Reductions

نویسندگان

  • Alessandro Barbarino
  • Efstathia Bura
چکیده

Factor models have been successfully employed in summarizing large datasets with few underlying latent factors and in building time series forecasting models for economic variables. When the objective is to forecast a target variable y with a large set of predictors x, the construction of the summary of the xs should be driven by how informative on y it is. Most existing methods first reduce the predictors and then forecast y in independent phases of the modeling process. In this paper we present an alternative and potentially more attractive alternative: summarizing x as it relates to y, so that all the information in the conditional distribution of y|x is preserved. These y-targeted reductions of the predictors are obtained using Suffi cient Dimension Reduction techniques. We show in simulations and real data analysis that forecasting models based on suffi cient reductions have the potential of significantly improved performance. JEL Classification Number: C32, C53, C55, E17

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Framework for Dimension Reduction in Forecasting

Factor models are widely used in summarizing large datasets with few underlying latent factors and in building time series forecasting models for economic variables. In these models, the reduction of the predictors and the modeling and forecasting of the response y are carried out in two separate and independent phases. We introduce a potentially more attractive alternative, Sufficient Dimensio...

متن کامل

Sufficient Forecasting Using Factor Models ∗

We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a highdimensional factor model implemented by the principal component analysis. Using the extracted factors, we develop a link-free forecasting method, called the sufficient forecasting, which provides several sufficient predictive ind...

متن کامل

Estimating Sufficient Reductions of the Predictors in Abundant High-dimensional Regressions by R. Dennis Cook1, Liliana Forzani

We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are ...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Creep Life Forecasting of Weldment

One of the yet unresolved engineering problems is forecasting the creep lives of weldment in a pragmatic way with sufficient accuracy. There are number of obstacles to circumvent including: complex material behavior, lack of accurate knowledge about the creep material behavior specially about the heat affected zones (HAZ),accurate and multi-axial creep damage models, etc. In general, creep life...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015